

Level 5 Diploma in Foundations of Data Science Statistical Methods using Excel (951) 177 Credits

Unit: Sampling, Hypothesis Testing and Analysis of	Guided Learning Hours: 300			
Variance	Number of Creditor 20			
Exam Paper No.: 4	Number of Credits. 50			
Prerequisites: Business terms and Excel knowledge.	Corequisites: A pass or higher in Diploma in Analytics			
Aim: Sampling is the process of selecting a subset of o	or equivalence.			
various population parameters such as mean proportion and standard deviation. Sampling is necessary because				
even when the entire population is available, using the entire population for estimation of a population parameter				
may not be feasible. Confidence Interval is the interval estimate of a population parameter estimated from a				
sample using a specified confidence level.				
In statistics, hypothesis is a claim made by a person/organisation, usually about population parameters such as mean or proportion. A hypothesis is a claim or belief and hypothesis testing is the statistical process of either rejecting or retaining the claim (by seeking evidence against the claim from a sample). <i>Analysis of Variance</i>				
(ANOVA) is used to understand the differences i	n population means among more than two			
populations.	\cdot			
On completion of the course, learners will be able to de	scribe:			
• Sampling and estimation	1.0			
Confidence interval				
Hypothesis Analysis of Variance (ANOVA)	Y			
Required Materials: Recommended Learning	Supplementary Materials: Lecture notes and tutor			
Resources.	extra reading recommendations.			
Special Requirements: The unit requires a combinatio	n of lectures, demonstrations, discussions, and hands-on			
labs.				
Intended Learning Outcomes:	Assessment Criteria:			
1. Understand sources of data variations,	1.1 Describe differences between sample and			
sampling error and reasons why it is impossible to	population.			
sample the entire population.	1.2 Be able to explain related formulas.			
Θ	1.5 Demonstrate using sampling in Excer.			
6	1.5 Describe Central Limit Theorem.			
57	1.6 Demonstrate applying Central Limit Theorem			
	in Excel.			
2. Understand the issues behind random	2.1 Demonstrate the confidence interval formula.			
sampling and how to deal with uncertainty in relation to creating confidence interval.	2.2 Describe confidence interval for a proportion and the associated formula.			
	2.3 Demonstrate the motivation for creating confidence interval			
	2.4 Be able to calculate confidence interval.			
	2.5 Be able to interpret confidence interval.			
	2.6 Explore real life examples of confidence interval implementation.			
3. Understand the importance of hypothesis	3.1 Define statistically significant, levels of			
testing, possible outcomes of the test and how to	confidence and levels of significance.			
conduct the test.	3.2 Describe null and alternative hypothesis.			
	3.3 Describe Type I and II errors.			
	3.4 Demonstrate performing different hypothesis tests in Excel.			

Diploma in Foundations of Data Science Statistical Methods using Excel (951) – Sampling, Hypothesis Testing and Analysis of Variance

	3.5	Explore examples of real-life hypothesis testing examples.	
	3.6	Describe directional and non-directional hypothesis.	
	3.7	Demonstrate how to calculate the p-value of a hypothesis test t-score result.	
4. Understand Analysis of Variance (ANOVA)	4.1	Describe one-way ANOVA.	
in determining significance differences between	4.2	Describe two-way ANOVA.	
means of different variables.	4.3	Demonstrate using ANOVA in Excel.	
	4.4	Explain ANOVA assumptions.	
	4.5	Describe repeated measures ANOVA.	
	4.6	Demonstrate conducting a nested ANOVA.	
	4.7	Describe ANOVA, ANCOVA, MANOVA and	
		MANCOVA statistical methods.	
	4.8	Describe real life applications of ANOVA	
		technique.	
Methods of Evaluation: A 2 ¹ / ₂ hour essay written paper with 5 questions, each carrying 20 marks. Candidates			
are required to answer all questions. Candidates also undertake project/coursework in Sampling, Hypothesis			
Testing and Analysis of Variance with a weighting of 100%.			

Testing and Analysis of Variance with a weighting of 100%.

Recommended Learning Resources: Sampling, Hypothesis Testing and Analysis of Variance

	• Sampling in Statistics by Stephanie Glen. ISBN-13 : 979-8416512354
Text Books	• Hypothesis Testing by Jim Frost. ISBN-13 : 978-1735431154
	• Making Sense of Z-Scores, T-Tests and ANOVA for Excel by Michael R. O'Brien.
	ISBN-13 : 978-1976394485
Study Manuals	
	BCE produced study packs
CD ROM	
	Power-point slides
Software	
	Excel
	21,
Ċ	
2	<i>*</i>

Diploma in Foundations of Data Science Statistical Methods using Excel (951) – Sampling, Hypothesis Testing and Analysis of Variance